OFFSET
0,4
COMMENTS
The digital sum analog (in base 7) of the Fibonacci recurrence. - Hieronymus Fischer, Jun 27 2007
a(n) and Fib(n)=A000045(n) are congruent modulo 6 which implies that (a(n) mod 6) is equal to (Fib(n) mod 6) = A082117(n-1) (for n>0). Thus (a(n) mod 6) is periodic with the Pisano period A001175(6)=24. - Hieronymus Fischer, Jun 27 2007
For general bases p>2, the inequality 2<=a(n)<=2p-3 holds (for n>2). Actually, a(n)<=11=A131319(7) for the base p=7. - Hieronymus Fischer, Jun 27 2007
LINKS
FORMULA
Periodic from n=3 with period 24. - Franklin T. Adams-Watters, Mar 13 2006
From Hieronymus Fischer, Jun 27 2007: (Start)
a(n) = a(n-1)+a(n-2)-6*(floor(a(n-1)/7)+floor(a(n-2)/7)).
a(n) = floor(a(n-1)/7)+floor(a(n-2)/7)+(a(n-1)mod 7)+(a(n-2)mod 7).
a(n) = Fib(n)-6*sum{1<k<n, Fib(n-k+1)*floor(a(k)/7)} where Fib(n)=A000045(n). (End)
MATHEMATICA
nxt[{a_, b_}]:={b, Total[IntegerDigits[a, 7]]+Total[IntegerDigits[b, 7]]}; Transpose[NestList[nxt, {0, 1}, 80]][[1]] (* Harvey P. Dale, Oct 12 2013 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Incorrect comment removed by Michel Marcus, Apr 29 2018
STATUS
approved