login
A326135
a(n) = sigma(A028234(n)), where sigma is the sum of divisors of n, and A028234 gives n without any occurrence of its smallest prime factor.
4
1, 1, 1, 1, 1, 4, 1, 1, 1, 6, 1, 4, 1, 8, 6, 1, 1, 13, 1, 6, 8, 12, 1, 4, 1, 14, 1, 8, 1, 24, 1, 1, 12, 18, 8, 13, 1, 20, 14, 6, 1, 32, 1, 12, 6, 24, 1, 4, 1, 31, 18, 14, 1, 40, 12, 8, 20, 30, 1, 24, 1, 32, 8, 1, 14, 48, 1, 18, 24, 48, 1, 13, 1, 38, 31, 20, 12, 56, 1, 6, 1, 42, 1, 32, 18, 44, 30, 12, 1, 78, 14, 24, 32, 48, 20, 4, 1
OFFSET
1,6
FORMULA
a(n) = A000203(A028234(n)).
a(n) = A326065(n) / A000203(A020639(n)^(A067029(n)-1))).
PROG
(PARI)
A028234(n) = { my(f = factor(n)); if (#f~, f[1, 1] = 1); factorback(f); }; \\ From A028234
A326135(n) = sigma(A028234(n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 08 2019
STATUS
approved