login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321644
Squarefree odd composite numbers whose factors are all twin primes (not necessarily from the same pair).
1
15, 21, 33, 35, 39, 51, 55, 57, 65, 77, 85, 87, 91, 93, 95, 105, 119, 123, 129, 133, 143, 145, 155, 165, 177, 183, 187, 195, 203, 205, 209, 213, 215, 217, 219, 221, 231, 247, 255, 273, 285, 287, 295, 301, 303, 305, 309, 319, 321, 323, 327, 341, 355, 357, 365
OFFSET
1,1
COMMENTS
This sequence has infinitely many terms if and only if the twin prime conjecture is true.
LINKS
EXAMPLE
a(3) = 33 = 3 * 11; 3 and 11 are both twin primes, but not from the same pair.
MAPLE
N:= 1000: # to get all terms <= N
P:= select(isprime, {seq(i, i=3..(N+6)/3, 2)}):
TP:= P intersect map(`-`, P, 2):
TP:= TP union map(`+`, TP, 2):
Agenda:= map(t -> [t], TP): Res:= NULL:
while Agenda <> {} do
Agenda:= map(proc(t) local s; seq([op(t), s], s = select(s -> s > t[-1] and s*convert(t, `*`) <= N , TP)) end proc, Agenda);
Res:= Res, op(map(convert, Agenda, `*`));
od:
sort([Res]); # Robert Israel, Jan 27 2019
MATHEMATICA
seqQ[n_] := CompositeQ[n] && SquareFreeQ[n] && Module[{f = FactorInteger[n][[;; , 1]]}, Length[Select[f, PrimeQ[# - 2] || PrimeQ[# + 2] &]] == Length[f]]; Select[ Range[1, 365, 2], seqQ] (* Amiram Eldar, Nov 15 2018 *)
PROG
(PARI) {forcomposite(n=3, 1000, if(moebius(n) <> 0, v = factor(n)~; i = 0; for(k = 1, #v, p=v[1, k]; if(isprime(p-2)||isprime(p+2), i++)); if(i==#v, print1(n", "))))}
CROSSREFS
Subsequence of A024556, and hence of A056911, A061346, and A071904.
Cf. A001097.
Sequence in context: A056913 A002557 A128907 * A225709 A020162 A046404
KEYWORD
nonn,easy
AUTHOR
Dimitris Valianatos, Nov 15 2018
STATUS
approved