login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321643 a(n) = 5*2^n - (-1)^n. 1
4, 11, 19, 41, 79, 161, 319, 641, 1279, 2561, 5119, 10241, 20479, 40961, 81919, 163841, 327679, 655361, 1310719, 2621441, 5242879, 10485761, 20971519, 41943041, 83886079, 167772161, 335544319, 671088641 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,2).

FORMULA

a(n+2) - a(n) = a(n+1) + a(n) = 15*2^n, n >= 0.

a(n) - 2*a(n-1) = period 2: repeat [3, -3], n > 0, a(0)=4, a(1)=11.

a(n+1) = 10*A051049(n) + period 2: repeat [1, 9].

a(n) = 12*2^n - A321483(n), n >= 0.

a(n) = 2^(n+2) + 3*A001045(n), n >= 0.

a(n) == A070366(n+4) (mod 9).

From Colin Barker, Dec 04 2018: (Start)

G.f.: (4 + 7*x) / ((1 + x)*(1 - 2*x)).

a(n) = a(n-1) + 2*a(n-2) for n > 1.

(End)

MAPLE

[5*2^n-(-1)^n$n=0..30]; # Muniru A Asiru, Dec 05 2018

MATHEMATICA

a[n_] := 5*2^n - (-1)^n; Array[a, 30, 0] (* Amiram Eldar, Dec 03 2018 *)

PROG

(PARI) Vec((4 + 7*x) / ((1 + x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Dec 04 2018

(GAP) List([0..30], n->5*2^n-(-1)^n); # Muniru A Asiru, Dec 05 2018

(Python) for n in range(0, 30): print(5*2**n - (-1)**n) # Stefano Spezia, Dec 05 2018

CROSSREFS

Cf. A020714, A010690, A010701, A051049, A070366, A110286.

Cf. A001045, A081808, A321483.

Sequence in context: A038439 A038431 A009908 * A049935 A074973 A327457

Adjacent sequences:  A321640 A321641 A321642 * A321644 A321645 A321646

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Dec 03 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 22:44 EDT 2019. Contains 328291 sequences. (Running on oeis4.)