

A081808


Numbers n such that the largest prime power in the factorization of n equals phi(n).


2



12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All numbers 3*2^k k>=2 are in the sequence.
Let n=p^k*q where p^k is the largest prime power is the factorization of n and (p,q)=1. If n belongs to the sequence then p^k = phi(n) = (p1)*p^(k1)*phi(q), implying that p=2 (since p1 cannot divide p^k for prime p>2). Then 2 = phi(q), implying that q=3. Therefore the terms are simply the sequence 3*2^n for n=2,3,...  Max Alekseyev, Mar 02 2007


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (2).


FORMULA

a(n) = 3*2^(n+1).


MATHEMATICA

Table[3*2^(n + 1), {n, 1, 30}] (* Stefan Steinerberger, Jun 17 2007 *)


PROG

(MAGMA) [3*2^(n + 1): n in [1..35]]; // Vincenzo Librandi, May 18 2011


CROSSREFS

Essentially the same as A007283 = 3*2^n.
Sequence in context: A181924 A270257 A180617 * A260261 A080495 A090776
Adjacent sequences: A081805 A081806 A081807 * A081809 A081810 A081811


KEYWORD

nonn,easy


AUTHOR

Benoit Cloitre, Apr 10 2003


STATUS

approved



