login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073408
Let cophi_m(x) denotes the cototient function applied m times to x (cophi(x)=x-phi(x)). Sequence gives the minimum number of iterations m such that cophi_m(n) divides n.
1
1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 3, 2, 1, 1, 4, 1, 3, 2, 4, 1, 2, 1, 4, 1, 3, 1, 5, 1, 1, 2, 5, 2, 4, 1, 5, 3, 3, 1, 6, 1, 4, 2, 5, 1, 2, 1, 6, 2, 4, 1, 6, 3, 3, 3, 6, 1, 5, 1, 5, 2, 1, 2, 6, 1, 5, 3, 6, 1, 4, 1, 6, 3, 5, 2, 7, 1, 3, 1, 7, 1, 6, 4, 6, 2, 4, 1, 7, 2, 5, 3, 6, 2, 2, 1, 6, 4, 6, 1, 7, 1, 4, 2, 7
OFFSET
2,5
LINKS
FORMULA
It seems that sum(k=1, n, a(k)) is asymptotic to C*n*log(n) with C < 1.
EXAMPLE
cophi(10) -> 6, cophi(6) -> 4, cophi(4) -> 2 and 2 divides 10. Hence 3 iterations are needed and a(10) = 3.
MATHEMATICA
Table[Length@ NestWhileList[# - EulerPhi@ # &, n, Or[# == n, ! Divisible[n, #]] &, 1, 12] - 1, {n, 2, 106}] (* Michael De Vlieger, Dec 22 2017 *)
PROG
(PARI) a(n)=if(n<0, 0, c=1; s=n; while(n%(s-eulerphi(s))>0, s=s-eulerphi(s); c++); c)
CROSSREFS
Sequence in context: A032436 A360615 A280274 * A372572 A120454 A321648
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Aug 23 2002
STATUS
approved