login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073410
Number of permutations p of (1,2,3,...,n) such that 1*(-1)^p(1)+2*(-1)^p(2)+3*(-1)^p(3)+...+n*(-1)^p(n)=0.
2
1, 0, 0, 2, 8, 0, 0, 576, 4608, 0, 0, 2505600, 30067200, 0, 0, 53444966400, 855119462400, 0, 0, 3587014803456000, 71740296069120000, 0, 0, 584198928937451520000, 14020774294498836480000, 0, 0, 196340349691596912721920000, 5497529791364713556213760000, 0, 0
OFFSET
0,4
COMMENTS
Equivalently the number of grand Dyck n-paths in which each run length is selected from {1..2*n} without replacement. - David Scambler, Apr 16 2013
LINKS
FORMULA
It seems that a(n)=0 if n==1 or 2 (mod 4) and a(4*k)=4*k*a(4*k-1). - Benoit Cloitre, Aug 23 2002
MAPLE
b:= proc(n, i, c) option remember; `if`(abs(n)>i*(i+1)/2, 0,
`if`(i=0, `if`(abs(c)<2, 1, 0),
b(n+i, i-1, c+1) +b(n-i, i-1, c-1)))
end:
a:= n-> b(0, n, 0)*floor(n/2)!*ceil(n/2)!/2^irem(n, 2):
seq(a(n), n=0..40); # Alois P. Heinz, Apr 29 2015
MATHEMATICA
b[n_, i_, c_] := b[n, i, c] = If[Abs[n] > i*(i+1)/2, 0, If[i == 0, If[Abs[c]<2, 1, 0], b[n+i, i-1, c+1] + b[n-i, i-1, c-1]]]; a[n_] := b[0, n, 0]*Floor[n/2]! *Ceiling[n/2]!/2^Mod[n, 2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 12 2015, after Alois P. Heinz *)
PROG
(PARI) a(n)=sum(k=1, n!, if(sum(i=1, n, i*(-1)^component(numtoperm(n, k), i)), 0, 1))
CROSSREFS
Cf. A227850.
Sequence in context: A230915 A242922 A242530 * A021361 A199156 A073001
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Aug 23 2002
EXTENSIONS
More terms from John W. Layman, Feb 05 2003
a(14)-a(22) from Robert Gerbicz, Nov 22 2010
a(0), a(23)-a(30) from Alois P. Heinz, Apr 28 2015
STATUS
approved