login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227850
Number of Dyck paths of semilength n*(4*n+1) in which the run length sequence is a permutation of {1,...,4*n}.
3
1, 4, 1248, 5401472, 114070692352, 7593330670240768
OFFSET
0,2
EXAMPLE
a(1) = 4: UUDUUUDDDD (2134), UUUDUUDDDD (3124), UUUUDDUDDD (4213), UUUUDDDUDD (4312).
MAPLE
h:= proc(n, s) option remember;
`if`(n>add(sort([s[]], `>`)[i], i=1..(nops(s)+1)/2), 0,
add(g(n-i, s minus {i}), i=select(x-> x<=n, s)))
end:
g:= proc(n, s) option remember;
`if`(s={}, `if`(n=0, 1, 0), add(h(n+i, s minus {i}), i=s))
end:
a:= n-> g(0, {$1..4*n}):
seq(a(n), n=0..3);
MATHEMATICA
h[n_, s_] := h[n, s] = If[n > Sum[Sort[s, Greater][[i]], {i, 1, (Length[s] + 1)/2}], 0, Sum[g[n - i, s ~Complement~ {i}], {i, Select[s, # <= n&]}] ];
g[n_, s_] := g[n, s] = If[s == {}, If[n == 0, 1, 0], Sum[h[n + i, s ~Complement~ {i}], {i, s}]];
a[n_] := g[0, Range[4*n]];
Table[a[n], {n, 0, 4}] (* Jean-François Alcover, Apr 23 2016, translated from Maple *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
STATUS
approved