login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227851
G.f.: Sum_{n>=1} n^n * x^n * Product_{k=1..n} (k + x) / (1 + n*k*x + n*x^2).
1
1, 1, 8, 125, 3650, 171440, 11815940, 1122759980, 140645621840, 22456283261240, 4451225265169640, 1072410309912462440, 308628265617560695880, 104567048162852196877640, 41198829781936190483346440, 18676924223093561435394148040, 9652952812685808726911849225480
OFFSET
0,3
COMMENTS
Compare to the identity:
Sum_{n>=0} x^n * Product_{k=1..n} (k + x) / (1 + k*x + x^2) = (1+x^2)/(1-x).
LINKS
FORMULA
a(n) == 2 (mod 3) for n>1.
a(n) == 0 (mod 5) for n>2.
a(n) == 0 (mod 8) for n>7.
a(n) ~ sqrt(Pi) * n^(2*n+1/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Nov 03 2014
EXAMPLE
G.f.: A(x) = 1 + x + 8*x^2 + 125*x^3 + 3650*x^4 + 171440*x^5 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + 2^2*x^2*(1+x)*(2+x)/((1+2*x+2*x^2)*(1+4*x+2*x^2)) + 3^3*x^3*(1+x)*(2+x)*(3+x)/((1+3*x+3*x^2)*(1+6*x+3*x^2)*(1+9*x+3*x^2)) + 4^4*x^4*(1+x)*(2+x)*(3+x)*(4+x)/((1+4*x+4*x^2)*(1+8*x+4*x^2)*(1+12*x+4*x^2)*(1+16*x+4*x^2)) +...
PROG
(PARI) {a(n)=polcoeff( sum(m=0, n, m^m*x^m*prod(k=1, m, (k+x)/(1+m*k*x+m*x^2 +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A204064.
Sequence in context: A355762 A215793 A273279 * A076960 A298623 A035130
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 31 2013
STATUS
approved