login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A325043
Heinz numbers of integer partitions, with at least three parts, whose product of parts is one fewer than their sum.
0
18, 60, 168, 216, 400, 528, 1248, 2240, 2880, 3264, 7296, 14080, 17664, 25088, 32256, 41472, 44544, 66560, 95232, 153600, 227328, 315392, 348160, 405504, 503808, 1056768, 1556480, 2310144, 2981888, 3833856, 5210112, 6881280, 7536640, 7929856, 8847360, 11599872
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers with at least three prime factors (counted with multiplicity) whose product of prime indices (A003963) is one fewer than their sum of prime indices (A056239).
FORMULA
a(n) = 2 * A301988(n).
EXAMPLE
The sequence of terms together with their prime indices begins:
18: {1,2,2}
60: {1,1,2,3}
168: {1,1,1,2,4}
216: {1,1,1,2,2,2}
400: {1,1,1,1,3,3}
528: {1,1,1,1,2,5}
1248: {1,1,1,1,1,2,6}
2240: {1,1,1,1,1,1,3,4}
2880: {1,1,1,1,1,1,2,2,3}
3264: {1,1,1,1,1,1,2,7}
7296: {1,1,1,1,1,1,1,2,8}
14080: {1,1,1,1,1,1,1,1,3,5}
17664: {1,1,1,1,1,1,1,1,2,9}
25088: {1,1,1,1,1,1,1,1,1,4,4}
32256: {1,1,1,1,1,1,1,1,1,2,2,4}
41472: {1,1,1,1,1,1,1,1,1,2,2,2,2}
44544: {1,1,1,1,1,1,1,1,1,2,10}
66560: {1,1,1,1,1,1,1,1,1,1,3,6}
95232: {1,1,1,1,1,1,1,1,1,1,2,11}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[10000], And[PrimeOmega[#]>2, Times@@primeMS[#]==Total[primeMS[#]]-1]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 25 2019
EXTENSIONS
More terms from Jinyuan Wang, Jun 27 2020
STATUS
approved