login
A228808
a(n) = Sum_{k=0..n} binomial(n*k, k^2).
4
1, 2, 4, 20, 296, 10067, 927100, 219541877, 110728186648, 137502766579907, 448577320868198789, 3169529341990169816462, 51243646781214826181569316, 2201837465728010770618930322223, 215520476721579201896200887266792583, 45634827026091489574547858030506357191920
OFFSET
0,2
COMMENTS
Ignoring initial term, equals the logarithmic derivative of A228809.
Equals row sums of triangle A228832.
LINKS
FORMULA
Limit n->infinity a(n)^(1/n^2) = (1-r)^(-r/2) = 1.533628065110458582053143..., where r = A220359 = 0.70350607643066243... is the root of the equation (1-r)^(2*r-1) = r^(2*r). - Vaclav Kotesovec, Sep 06 2013
EXAMPLE
L.g.f.: L(x) = 2*x + 4*x^2/2 + 20*x^3/3 + 296*x^4/4 + 10067*x^5/5 +...
where
exp(L(x)) = 1 + 2*x + 4*x^2 + 12*x^3 + 94*x^4 + 2195*x^5 + 158904*x^6 + 31681195*x^7 +...+ A228809(n)*x^n +...
MATHEMATICA
Table[Sum[Binomial[n*k, k^2], {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Sep 06 2013 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(n*k, k^2))
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 04 2013
STATUS
approved