|
|
A228805
|
|
Number of distinct denominators of rational numbers whose continued fraction consists exclusively of 1s and 2s and has length <=n.
|
|
2
|
|
|
1, 2, 4, 8, 14, 26, 45, 85, 155, 286, 540, 1047, 2014, 3939, 7642, 15082, 29601, 58797, 116248, 231530, 459976, 917030, 1826669, 3641525, 7253511, 14463688, 28834305, 57481793, 114543879, 228286471
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
EXAMPLE
|
a = 1 counts the denominators in {1/1,2/1} corresponding to the continued fractions [1] and [2]; a(2) = 2 counts the denominators in {1/1,2/1,2/1,3/2,3/1,5/2} corresponding to the continued fractions [1], [2], [1,1], [1,2], [2,1], [2,2].
|
|
MATHEMATICA
|
a[n_] := Length[Sort[Union[Denominator[Map[FromContinuedFraction, Flatten[Map[Tuples[{1, 2}, #] &, Range[n]], 1]]]]]]; Table[a[n], {n, 1, 12}]
|
|
PROG
|
(Sage)
import itertools
def a(n):
ans = set()
for k in range(1, n+1):
for p in itertools.product([1, 2], repeat=k):
ans.add(continued_fraction(p).value().denominator())
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,changed
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|