|
|
A027557
|
|
Number of 3-balanced strings of length n: let d(S)= #(1)'s in S - #(0)'s, then S is k-balanced if every substring T has -k<=d(T)<=k; here k=3.
|
|
1
|
|
|
1, 2, 4, 8, 14, 26, 44, 78, 130, 224, 370, 626, 1028, 1718, 2810, 4656, 7594, 12506, 20356, 33374, 54242, 88640, 143906, 234594, 380548, 619238, 1003882, 1631312, 2643386, 4291082, 6950852, 11274702, 18258322, 29598560
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = a(n-1) + 3a(n-2) - 2a(n-3) - 2a(n-4); g.f. (1+x-x^2) / (1-x-x^2)(1-2x^2).
|
|
MATHEMATICA
|
LinearRecurrence[{1, 3, -2, -2}, {1, 2, 4, 8}, 40] (* Harvey P. Dale, Feb 01 2012 *)
|
|
PROG
|
(PARI) a(n) = 2*fibonacci(n+3) - 2^((n+2)\2) - 2^((n+1)\2) /* Max Alekseyev */
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|