login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207136
a(n) = Sum_{k=0..n} binomial(n^2, k*(n-k)).
8
1, 2, 6, 74, 2942, 379502, 155417946, 200991082378, 814134608643518, 10305926982053248142, 406157795399324680023006, 49758289996116571598723737976, 18917910771770463473290738891259546, 22290399373603219140501180230536732389992
OFFSET
0,2
COMMENTS
Ignoring initial term a(0), equals the logarithmic derivative of A207135.
Equals the row sums of triangle A228836.
LINKS
FORMULA
a(n) ~ c * 2*sqrt(2/(3*Pi)) * (4/3^(3/4))^(n^2)/n, where c = EllipticTheta[3,0,1/3] = JacobiTheta3(0,1/3) = 1.69145968168171534... if n is even, and c = EllipticTheta[2,0,1/3] = JacobiTheta2(0,1/3) = 1.690611203075214233... if n is odd. - Vaclav Kotesovec, Mar 03 2014
EXAMPLE
L.g.f.: L(x) = 2*x + 6*x^2/2 + 74*x^3/3 + 2942*x^4/4 + 379502*x^5/5 +...
where exponentiation equals the g.f. of A207135:
exp(L(x)) = 1 + 2*x + 5*x^2 + 32*x^3 + 796*x^4 + 77508*x^5 +...
By definition, the initial terms begin: a(0) = 1;
a(1) = C(1,0) + C(1,0);
a(2) = C(4,0) + C(4,1) + C(4,0);
a(3) = C(9,0) + C(9,2) + C(9,2) + C(9,0);
a(4) = C(16,0) + C(16,3) + C(16,4) + C(16,3) + C(16,0);
a(5) = C(25,0) + C(25,4) + C(25,6) + C(25,6) + C(25,4) + C(25,0);
a(6) = C(36,0) + C(36,5) + C(36,8) + C(36,9) + C(36,8) + C(36,5) + C(36,0); ...
which is evaluated as:
a(1) = 1 + 1 = 2;
a(2) = 1 + 4 + 1 = 6;
a(3) = 1 + 36 + 36 + 1 = 74;
a(4) = 1 + 560 + 1820 + 560 + 1 = 2942;
a(5) = 1 + 12650 + 177100 + 177100 + 12650 + 1 = 379502;
a(6) = 1 + 376992 + 30260340 + 94143280 + 30260340 + 376992 + 1 = 155417946; ...
MAPLE
A207136:=n->add(binomial(n^2, k*(n-k)), k=0..n): seq(A207136(n), n=0..15); # Wesley Ivan Hurt, Jun 23 2015
MATHEMATICA
Table[Sum[Binomial[n^2, k*(n-k)], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 03 2014 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n^2, (n-k)*k))}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A207135 (exp), A167009, A228836.
Sequence in context: A019993 A357024 A218058 * A304641 A065410 A000721
KEYWORD
nonn,nice,easy
AUTHOR
Paul D. Hanna, Feb 15 2012
STATUS
approved