login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207138
L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k*(n-k))*x^k = Sum_{n>=1} a(n)*x^n/n.
3
1, 3, 7, 51, 761, 17913, 688745, 56611987, 11405877739, 4272862207703, 2450039810788461, 2224842228379519641, 4169966883810355864393, 19139862395982576668262825, 166161479603614500915921996017, 2206856314384330228779059994929555
OFFSET
1,2
COMMENTS
Equals the logarithmic derivative of A207137.
FORMULA
a(n) = n*Sum_{k=0..[n/2]} binomial((n-k)^2, k*(n-2*k))/(n-k).
Limit n->infinity a(n)^(1/n^2) = ((1-r)^2/(r*(1-2*r)))^((1-3*r)*(1-r)/(3*(1-2*r))) = 1.36198508972775011599..., where r = 0.195220321930105755... is the root of the equation (1-3*r+3*r^2)^(3*(2*r-1)) = (r*(1-2*r))^(4*r-1) * (1-r)^(4*(r-1)). - Vaclav Kotesovec, Mar 04 2014
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 51*x^4/4 + 761*x^5/5 + 17913*x^6/6 +...
where exponentiation equals the g.f. of A207137:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 17*x^4 + 171*x^5 + 3171*x^6 +...
To illustrate the definition, the l.g.f. equals the series:
L(x) = (1 + x)*x + (1 + 4*x + 1*x^2)*x^2/2
+ (1 + 36*x + 36*x^2 + 1*x^3)*x^3/3
+ (1 + 560*x + 1820*x^2 + 560*x^3 + 1*x^4)*x^4/4
+ (1 + 12650*x + 177100*x^2 + 177100*x^3 + 12650*x^4 + 1*x^5)*x^5/5
+ (1 + 376992*x + 30260340*x^2 + 94143280*x^3 + 30260340*x^4 + 376992*x^5 + 1*x^6)*x^6/6 +...
MATHEMATICA
Table[n*Sum[Binomial[(n-k)^2, k*(n-2*k)]/(n-k), {k, 0, Floor[n/2]}], {n, 1, 20}] (* Vaclav Kotesovec, Mar 04 2014 *)
PROG
(PARI) {a(n)=n*polcoeff(sum(m=1, n+1, x^m/m*sum(k=0, m, binomial(m^2, k*(m-k))*x^k))+x*O(x^n), n)}
(PARI) {a(n)=n*sum(k=0, n\2, binomial((n-k)^2, k*(n-2*k))/(n-k))}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A273092 A120788 A346143 * A041277 A248239 A239317
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 15 2012
STATUS
approved