login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304641
E.g.f. A(x) satisfies: 1 = Sum_{n>=0} ( exp((n+1)*x) - A(x) )^n.
1
1, 2, 6, 74, 3078, 228842, 25277286, 3837501194, 762731347398, 191798593122602, 59475206565622566, 22290155840476400714, 9933314218291366691718, 5192540728710234994272362, 3147427468437058629798524646, 2190237887318737512524514442634, 1734606000858253287464231519860038, 1551466530739217915273113571521758122, 1556475858078242120174483544923467343526
OFFSET
0,2
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ( exp((n+1)*x) - A(x) )^n.
(2) 1 = Sum_{n>=0} exp(n*(n+1)*x) / (1 + exp(n*x)*A(x))^(n+1).
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 6*x^2/2! + 74*x^3/3! + 3078*x^4/4! + 228842*x^5/5! + 25277286*x^6/6! + 3837501194*x^7/7! + 762731347398*x^8/8! + 191798593122602*x^9/9! + 59475206565622566*x^10/10! + ...
such that
1 = 1 + (exp(2*x) - A(x)) + (exp(3*x) - A(x))^2 + (exp(4*x) - A(x))^3 + (exp(5*x) - A(x))^4 + (exp(6*x) - A(x))^5 + (exp(7*x) - A(x))^6 + (exp(8*x) - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + exp(2*x)/(1 + exp(x)*A(x))^2 + exp(6*x)/(1 + exp(2*x)*A(x))^3 + exp(12*x)/(1 + exp(3*x)*A(x))^4 + exp(20*x)/(1 + exp(4*x)*A(x))^5 + exp(30*x)/(1 + exp(5*x)*A(x))^6 + exp(42*x)/(1 + exp(6*x)*A(x))^7 + ...
RELATED SERIES.
log(A(x)) = 2*x + 2*x^2/2! + 54*x^3/3! + 2570*x^4/4! + 199590*x^5/5! + 22598762*x^6/6! + 3488755494*x^7/7! + 701959131050*x^8/8! + 178186466260710*x^9/9! + 55669778154059882*x^10/10! + ...
exp(-x) * A(x) = 1 + x + 3*x^2/2! + 61*x^3/3! + 2811*x^4/4! + 214141*x^5/5! + 23949003*x^6/6! + 3665260621*x^7/7! + 732726498171*x^8/8! + 185070066199261*x^9/9! + 57591088296085803*x^10/10! + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, (exp((m+1)*x +x*O(x^#A)) - Ser(A))^m ) )[#A] ); n!*A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A357024 A218058 A207136 * A065410 A000721 A262279
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 16 2018
STATUS
approved