login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228809
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n*k, k^2) ).
5
1, 2, 4, 12, 94, 2195, 158904, 31681195, 13904396167, 15305894726347, 44888344014554903, 288228807835914177564, 4270880356112396772814732, 169380654509201278629725097906, 15394658527137259981745081997280638, 3042352591056504014301304188228238554499
OFFSET
0,2
COMMENTS
Logarithmic derivative equals A228808.
Equals row sums of triangle A228904.
LINKS
EXAMPLE
G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 94*x^4 + 2195*x^5 +...
where
log(A(x)) = 2*x + 4*x^2/2 + 20*x^3/3 + 296*x^4/4 + 10067*x^5/5 + 927100*x^6/6 +...+ A228808(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, x^m/m*sum(k=0, m, binomial(m*k, k^2)))+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. variants: A167006, A206848.
Sequence in context: A217041 A120618 A259048 * A326945 A309718 A230814
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 04 2013
STATUS
approved