login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325503 Heinz number of row n of the triangle of Stirling numbers of the second kind A008277. 2
2, 4, 20, 884, 528844, 3460086044, 340672148731996, 477782556719729075524, 11694209380474301218263758996, 4967476846044415922850025924897606724, 43298471669920632729336800855543564573041217668, 7790810575556906457316064931238939360882160372451591124244 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

LINKS

Table of n, a(n) for n=1..12.

Index entries for sequences related to Heinz numbers

FORMULA

a(n) = Product_{i = 1..n} prime(A008277(n,i)).

A061395(a(n)) = A002870(n).

A056239(a(n)) = A000110(n).

EXAMPLE

The sequence of terms together with their prime indices begins:

                              2: {1}

                              4: {1,1}

                             20: {1,1,3}

                            884: {1,1,6,7}

                         528844: {1,1,10,15,25}

                     3460086044: {1,1,15,31,65,90}

                340672148731996: {1,1,21,63,140,301,350}

          477782556719729075524: {1,1,28,127,266,966,1050,1701}

  11694209380474301218263758996: {1,1,36,255,462,2646,3025,6951,7770}

MATHEMATICA

Times@@@Table[Prime[StirlingS2[n, k]], {n, 1, 10}, {k, 1, n}]

CROSSREFS

Cf. A000040, A001222, A002870, A008277, A024412, A056239, A112798, A215366, A325500, A325502.

Sequence in context: A059588 A132498 A325050 * A087314 A326972 A099179

Adjacent sequences:  A325500 A325501 A325502 * A325504 A325505 A325506

KEYWORD

nonn

AUTHOR

Gus Wiseman, May 07 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 19:53 EDT 2019. Contains 328319 sequences. (Running on oeis4.)