login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Four interlaced 2nd order polynomials: a(4*k) = k*(1+2*k); a(1+2*k) = 2*(1+2*k)*(3+2*k); a(2+4*k) = 4*(1+k)*(1+2*k).
3

%I #49 Sep 08 2022 08:45:57

%S 0,6,4,30,3,70,24,126,10,198,60,286,21,390,112,510,36,646,180,798,55,

%T 966,264,1150,78,1350,364,1566,105,1798,480,2046,136,2310,612,2590,

%U 171,2886,760,3198,210,3526,924,3870,253,4230,1104,4606,300,4998,1300,5406,351

%N Four interlaced 2nd order polynomials: a(4*k) = k*(1+2*k); a(1+2*k) = 2*(1+2*k)*(3+2*k); a(2+4*k) = 4*(1+k)*(1+2*k).

%C a(n) = T(0,n) and differences T(n,k) = T(n-1,k+1) - T(n-1,k) define the array

%C 0, 6, 4, 30, 3, 70, 24, 126, 10, 198, 60, 286, 21, 390, ..

%C 6, -2, 26, -27, 67, -46, 102, -116, 188, -138, 226, -265, 369, -278, ..

%C -8, 28 -53, 94, -113, 148, -218, 304, -326, 364, -491, 634, -647, 676, ...

%C T(3,n) mod 9 is the sequence 1, 1, 1, 4, 4, 4, 7, 7, 7, 4, 4, 4 (and periodically repeated with period 12).

%C A064680(2+n) divides a(n), where b(n) = a(n)/A064680(2+n) = 0, 1, 2, 3, 1, 5, 6, 7, 2,... for n>=0, obeys b(4*k) = k and has recurrence b(n) = 2*b(n-4) - b(n-8).

%H Vincenzo Librandi, <a href="/A191567/b191567.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,3,0,0,0,-3,0,0,0,1).

%F a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).

%F a(n) = A061037(n+2) + A181318(n). - _Paul Curtz_, Jul 19 2011

%F a(n) = A060819(n) * A145979(n). - _Paul Curtz_, Sep 06 2011

%F G.f.: x*(6+4*x+30*x^2+3*x^3+52*x^4+12*x^5+36*x^6+x^7+6*x^8-2*x^10) /( (1-x)^3 *(1+x)^3 *(1+x^2)^3 ). - _R. J. Mathar_, Jun 17 2011

%F Let BEB(n) = a(n)/A061038(n+2) = A060819(n)/A145979(n). Then (BEB(n))^2 = A181318(n)/A061038(n+2) = BEB(n) - A061037(n+2)/A061038(n+2). - _Paul Curtz_, Jul 19 2011, index corrected by _R. J. Mathar_, Sep 09 2011

%F From _Luce ETIENNE_, Apr 18 2017: (Start)

%F a(n) = n*(n + 2)*(37 - 27*(-1)^n - 3*((-1)^((2*n + 1 - (-1)^n)/4) + (-1)^((2*n - 1 + (-1)^n)/4)))/32.

%F a(n) = n*(n+2)*(37-27*cos(n*Pi) - 6*cos(n*Pi/2))/32.

%F a(n) = n*(n + 2)*(37 - 27*(-1)^n - 3*(i^n + (-i)^n))/32, where i=sqrt(-1). (End)

%t Table[Which[OddQ@ n, 2 (1 + 2 #) (3 + 2 #) &[(n - 1)/2], Mod[n, 4] == 0, # (1 + 2 #) &[n/4], True, 4 (1 + #) (1 + 2 #) &[(n - 2)/4]], {n, 0, 60}] (* or *)

%t CoefficientList[Series[x(6 +4x +30x^2 +3x^3 +52x^4 +12x^5 +36x^6 +x^7 +6x^8 -2x^10)/((1-x)^3*(1+x)^3*(1+x^2)^3), {x, 0, 60}], x] (* _Michael De Vlieger_, Apr 22 2017 *)

%t LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1}, {0,6,4,30,3,70,24,126,10,198,60, 286}, 80] (* _Vincenzo Librandi_, Apr 23 2017 *)

%o (Magma) I:=[0,6,4,30,3,70,24,126,10,198,60,286]; [n le 12 select I[n] else 3*Self(n-4)-3*Self(n-8)+Self(n-12): n in [1..60]]; // _Vincenzo Librandi_, Apr 23 2017

%o (PARI) m=60; v=concat([0,6,4,30,3,70,24,126,10,198,60,286], vector(m-12)); for(n=13, m, v[n]=3*v[n-4]-3*v[n-8]+v[n-12]); v \\ _G. C. Greubel_, Feb 26 2019

%o (Sage) (x*(6+4*x+30*x^2+3*x^3+52*x^4+12*x^5+36*x^6+x^7+6*x^8-2*x^10)/((1-x)^3 *(1+x)^3*(1+x^2)^3 )).series(x, 60).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 26 2019

%o (GAP) a:=[0,6,4,30,3,70,24,126,10,198,60,286];; for n in [13..60] do a[n]:= 3*a[n-4]-3*a[n-8]+a[n-12]; od; a; # _G. C. Greubel_, Feb 26 2019

%Y Cf. A014105, A000466, A000384, A177427.

%K nonn,easy

%O 0,2

%A _Paul Curtz_, Jun 12 2011