login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274705
Rectangular array read by ascending antidiagonals. Row n has the exponential generating function 1/M_{n}(z^n) where M_{n}(z) is the n-th Mittag-Leffler function, nonzero coefficients only, for n>=1.
2
1, 1, -2, 1, -3, 3, 1, -4, 25, -4, 1, -5, 133, -427, 5, 1, -6, 621, -15130, 12465, -6, 1, -7, 2761, -437593, 4101799, -555731, 7, 1, -8, 11999, -12012016, 1026405753, -2177360656, 35135945, -8, 1, -9, 51465, -325204171, 243458990271, -6054175060941, 1999963458217, -2990414715, 9
OFFSET
0,3
LINKS
L. Carlitz, Some arithmetic properties of the Olivier functions, Math. Ann. 128 (1954), 412-419.
H. J. Haubold, A. M. Mathai, and R. K. Saxena, Mittag-Leffler Functions and Their Applications, Journal of Applied Mathematics, vol. 2011, Article ID 298628, 51 pages.
Eric Weisstein's MathWorld, Generalized hyperbolic functions.
FORMULA
Recurrence for the m-th row: R(m, n) = -Sum_{k=0..n-1} binomial(m*n+1, m*k+1)*R(m, k) for n >= 1. See Carlitz (1.3).
EXAMPLE
Array starts:
n=1: {1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11,...} [A181983]
n=2: {1, -3, 25, -427, 12465, -555731, 35135945,...} [A009843]
n=3: {1, -4, 133, -15130, 4101799, -2177360656,...} [A274703]
n=4: {1, -5, 621, -437593, 1026405753, -6054175060941,...} [A274704]
n=5: {1, -6, 2761, -12012016, 243458990271, ...}
MAPLE
ibn := proc(m, k) local w, om, t;
w := exp(2*Pi*I/m); om := m*x/add(exp(x*w^j), j=0..m-1);
t := series(om, x, k+m); simplify(k!*coeff(t, x, k)) end:
seq(seq(ibn(n-k+2, n*k-n-k^2+3*k-1), k=1..n+1), n=0..8);
MATHEMATICA
A274705Row[m_] := Module[{c}, c = CoefficientList[Series[1/MittagLefflerE[m, z^m],
{z, 0, 12*m}], z]; Table[Factorial[m*n+1]*c[[m*n+1]], {n, 0, 9}] ]
Table[Print[A274705Row[n]], {n, 1, 6}]
PROG
(Sage)
def ibn(m, k):
w = exp(2*pi*I/m)
om = m*x/sum(exp(x*w^j) for j in range(m))
t = taylor(om, x, 0, k + m)
return simplify(factorial(k)*t.list()[k])
def A274705_row(m, size):
return [ibn(m, k) for k in range(1, m*size, m)]
for n in (1..4): print(A274705_row(n, 8))
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 03 2016
STATUS
approved