login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A142249 Triangle read by rows, a generalization of the Eulerian numbers based on Nielsen's generalized polylogarithm (case m = 2). 4
-1, -1, 1, -1, 2, -1, 3, 3, -1, 4, 19, 4, -1, 5, 80, 65, 5, -1, 6, 286, 566, 181, 6, -1, 7, 945, 3710, 2905, 455, 7, -1, 8, 2997, 20756, 31781, 12636, 1079, 8, -1, 9, 9294, 105299, 278304, 218559, 49754, 2469, 9 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

Table of n, a(n) for n=1..47.

Eric Weisstein's World of Mathematics, Nielsen Generalized Polylogarithm.

FORMULA

Let p(n, m) = (m - 1)!*(1 - x)^n*PolyLog(-n, m, x)/x and P(n) the polynomial given by the expansion of p(n, m=2) after replacing log(1 - x) by 1. T(n, k) is the k-th coefficient of P(n). Using instead p(n, m=1) gives the Eulerian numbers A008292.

EXAMPLE

Triangle starts:

{-1}

{-1, 1}

{-1, 2}

{-1, 3,    3}

{-1, 4,   19,      4}

{-1, 5,   80,     65,      5}

{-1, 6,  286,    566,    181,      6}

{-1, 7,  945,   3710,   2905,    455,     7}

{-1, 8, 2997,  20756,  31781,  12636,  1079,    8}

{-1, 9, 9294, 105299, 278304, 218559, 49754, 2469, 9}

...

For example with n = 4 we have p(n, x ) = (2-1)! * (1 - x)^n * PolyLog(-n, 2, x)/x

  = x*(7 + 4*x) - (1 + 4*x + x^2)*log(1-x). Replacing log(1-x) by 1 reduces this to x*(7 + 4*x) - (1 + 4*x + x^2) = 3*x^2 + 3*x - 1 with coefficients [-1, 3, 3].

MATHEMATICA

npl[n_, m_] := (m-1)! (1 - x)^n PolyLog[-n, m, x]/x;

A142249Row[n_] := CoefficientList[FunctionExpand[npl[n, 2]], x] /. Log[1-x] -> 1;

Table[A142249Row[n], {n, 1, 10}] // Flatten

(* Some older versions of Mathematica might use: *)

Flatten[Table[CoefficientList[Simplify[(1-x)^n * PolyLog[-n, 2, x] / (x*Log[1-x])], x]/.x->1-E, {n, 1, 15}]] (* Vaclav Kotesovec, Oct 12 2017 *)

CROSSREFS

Row sums are A081047.

A008292 (m=1), A142249 (m=2), A293298 (m=3 with an additional first column).

Cf. A293561 (column 3), A293562 (column 4).

Sequence in context: A179943 A089944 A180165 * A274705 A257243 A097351

Adjacent sequences:  A142246 A142247 A142248 * A142250 A142251 A142252

KEYWORD

sign,tabl

AUTHOR

Roger L. Bagula and Gary W. Adamson, Sep 18 2008

EXTENSIONS

Edited by Peter Luschny, Oct 11 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 22:32 EST 2021. Contains 349468 sequences. (Running on oeis4.)