login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274703 Exponential generating function 1/M_{3}(z^3) where M_{n}(z) is the n-th Mittag-Leffler function, nonzero coefficients only. 3
1, -4, 133, -15130, 4101799, -2177360656, 1999963458217, -2919514870785766, 6365117686550339275, -19765974970578036695068, 84220118333781814726917709, -477722110504065444764182065202, 3518554409906597166261453268226671, -32952557456293494405944914420304822440 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For references see also A274705 which is the main entry for this sequence of sequences.

LINKS

Robert Israel, Table of n, a(n) for n = 0..166

Eric Weisstein's MathWorld, Mittag-Leffler Function

Wikipedia, Mittag-Leffler function

FORMULA

E.g.f. (nonzero coefficients): z/((exp(z)+2*exp(-z/2)*cos(z*3^(1/2)/2))/3).

For n >= 1, a(n) = -Sum_{k=0..n-1} a(k) binomial(3n+1,3k+1). - Robert Israel, Jul 03 2016

MAPLE

s := series(z/((exp(z)+2*exp(-z/2)*cos(z*3^(1/2)/2))/3), z, 60):

seq((n*3+1)!*coeff(s, z, n*3+1), n=0..13);

MATHEMATICA

c = CoefficientList[Series[1/MittagLefflerE[3, z^3], {z, 0, 15*3}], z];

Table[Factorial[3*n+1]*c[[3*n+1]], {n, 0, 13}]

CROSSREFS

Cf. A181983 (n=1), A009843 (n=2), A274704 (n=4), A274705 (array).

Sequence in context: A194538 A194539 A146547 * A045482 A263588 A006429

Adjacent sequences:  A274700 A274701 A274702 * A274704 A274705 A274706

KEYWORD

sign

AUTHOR

Peter Luschny, Jul 03 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 06:14 EST 2018. Contains 317162 sequences. (Running on oeis4.)