login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rectangular array read by ascending antidiagonals. Row n has the exponential generating function 1/M_{n}(z^n) where M_{n}(z) is the n-th Mittag-Leffler function, nonzero coefficients only, for n>=1.
2

%I #41 Mar 08 2020 10:14:40

%S 1,1,-2,1,-3,3,1,-4,25,-4,1,-5,133,-427,5,1,-6,621,-15130,12465,-6,1,

%T -7,2761,-437593,4101799,-555731,7,1,-8,11999,-12012016,1026405753,

%U -2177360656,35135945,-8,1,-9,51465,-325204171,243458990271,-6054175060941,1999963458217,-2990414715,9

%N Rectangular array read by ascending antidiagonals. Row n has the exponential generating function 1/M_{n}(z^n) where M_{n}(z) is the n-th Mittag-Leffler function, nonzero coefficients only, for n>=1.

%H L. Carlitz, <a href="https://doi.org/10.1007/BF01360145">Some arithmetic properties of the Olivier functions</a>, Math. Ann. 128 (1954), 412-419.

%H H. J. Haubold, A. M. Mathai, and R. K. Saxena, <a href="http://dx.doi.org/10.1155/2011/298628">Mittag-Leffler Functions and Their Applications</a>, Journal of Applied Mathematics, vol. 2011, Article ID 298628, 51 pages.

%H L. Olivier, <a href="https://gdz.sub.uni-goettingen.de/id/PPN243919689_0002?tify=%7B%22pages%22:[257]%7D">Bemerkungen über eine Art von Functionen, welche ähnliche Eigenschaften haben, wie der Cosinus und Sinus</a>, J. Reine Angew. Math. 2 (1827), 243-251.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/GeneralizedHyperbolicFunctions.html">Generalized hyperbolic functions</a>.

%F Recurrence for the m-th row: R(m, n) = -Sum_{k=0..n-1} binomial(m*n+1, m*k+1)*R(m, k) for n >= 1. See Carlitz (1.3).

%e Array starts:

%e n=1: {1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11,...} [A181983]

%e n=2: {1, -3, 25, -427, 12465, -555731, 35135945,...} [A009843]

%e n=3: {1, -4, 133, -15130, 4101799, -2177360656,...} [A274703]

%e n=4: {1, -5, 621, -437593, 1026405753, -6054175060941,...} [A274704]

%e n=5: {1, -6, 2761, -12012016, 243458990271, ...}

%p ibn := proc(m, k) local w, om, t;

%p w := exp(2*Pi*I/m); om := m*x/add(exp(x*w^j), j=0..m-1);

%p t := series(om, x, k+m); simplify(k!*coeff(t,x,k)) end:

%p seq(seq(ibn(n-k+2, n*k-n-k^2+3*k-1), k=1..n+1),n=0..8);

%t A274705Row[m_] := Module[{c}, c = CoefficientList[Series[1/MittagLefflerE[m,z^m],

%t {z,0,12*m}],z]; Table[Factorial[m*n+1]*c[[m*n+1]], {n,0,9}] ]

%t Table[Print[A274705Row[n]], {n,1,6}]

%o (Sage)

%o def ibn(m, k):

%o w = exp(2*pi*I/m)

%o om = m*x/sum(exp(x*w^j) for j in range(m))

%o t = taylor(om, x, 0, k + m)

%o return simplify(factorial(k)*t.list()[k])

%o def A274705_row(m, size):

%o return [ibn(m, k) for k in range(1, m*size, m)]

%o for n in (1..4): print(A274705_row(n, 8))

%Y Cf. A009843, A181983, A274703, A274704.

%K sign,tabl

%O 0,3

%A _Peter Luschny_, Jul 03 2016