The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034488 Sum of n-th powers of divisors of 6. 6
 4, 12, 50, 252, 1394, 8052, 47450, 282252, 1686434, 10097892, 60526250, 362976252, 2177317874, 13062296532, 78368963450, 470199366252, 2821153019714, 16926788715972, 101560344351050, 609360902796252, 3656161927895954, 21936961102828212 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS T. D. Noe, Table of n, a(n) for n=0..200 Index entries for linear recurrences with constant coefficients, signature (12,-47,72,-36). FORMULA a(n) = 1^n + 2^n + 3^n + 6^n. G.f.: -2*(36*x^3 - 47*x^2 + 18*x - 2) / ((x - 1)*(2*x - 1)*(3*x - 1)*(6*x - 1)). - Colin Barker, Apr 20 2014 MATHEMATICA a[n_] := (2^n + 1)*(3^n + 1); Table[a[n], {n, 0, 19}] (* Zerinvary Lajos, Mar 25 2007 *) Total[#^Range[0, 20]&/@Divisors[6]] (* Vincenzo Librandi, Apr 17 2014 *) PROG (Sage) [sigma(6, n)for n in range(0, 20)] # Zerinvary Lajos, Jun 04 2009 (PARI) a(n)=6^n+3^n+2^n+1 \\ Charles R Greathouse IV, Apr 28, 2011 (MAGMA) [DivisorSigma(n, 6): n in [0..20]]; // Vincenzo Librandi, Apr 17 2014 CROSSREFS Sequence in context: A149395 A149396 A149397 * A149398 A149399 A149400 Adjacent sequences:  A034485 A034486 A034487 * A034489 A034490 A034491 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Colin Barker, Apr 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 14:10 EST 2021. Contains 349430 sequences. (Running on oeis4.)