login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of n-th powers of divisors of 6.
6

%I #31 Sep 08 2022 08:44:51

%S 4,12,50,252,1394,8052,47450,282252,1686434,10097892,60526250,

%T 362976252,2177317874,13062296532,78368963450,470199366252,

%U 2821153019714,16926788715972,101560344351050,609360902796252,3656161927895954,21936961102828212

%N Sum of n-th powers of divisors of 6.

%H T. D. Noe, <a href="/A034488/b034488.txt">Table of n, a(n) for n=0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (12,-47,72,-36).

%F a(n) = 1^n + 2^n + 3^n + 6^n.

%F G.f.: -2*(36*x^3 - 47*x^2 + 18*x - 2) / ((x - 1)*(2*x - 1)*(3*x - 1)*(6*x - 1)). - _Colin Barker_, Apr 20 2014

%t a[n_] := (2^n + 1)*(3^n + 1); Table[a[n], {n, 0, 19}] (* _Zerinvary Lajos_, Mar 25 2007 *)

%t Total[#^Range[0, 20]&/@Divisors[6]] (* _Vincenzo Librandi_, Apr 17 2014 *)

%o (Sage) [sigma(6,n)for n in range(0,20)] # _Zerinvary Lajos_, Jun 04 2009

%o (PARI) a(n)=6^n+3^n+2^n+1 \\ _Charles R Greathouse IV_, Apr 28, 2011

%o (Magma) [DivisorSigma(n, 6): n in [0..20]]; // _Vincenzo Librandi_, Apr 17 2014

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_

%E More terms from _Colin Barker_, Apr 20 2014