Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 May 07 2019 11:00:21
%S 1,1,0,1,1,0,1,2,3,0,1,3,8,7,0,1,4,15,32,19,0,1,5,24,81,136,51,0,1,6,
%T 35,160,459,592,141,0,1,7,48,275,1120,2673,2624,393,0,1,8,63,432,2275,
%U 8064,15849,11776,1107,0,1,9,80,637,4104,19375,59136,95175,53344,3139,0
%N Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).
%H Seiichi Manyama, <a href="/A307910/b307910.txt">Antidiagonals n = 0..139, flattened</a>
%F A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + k*x^2)^n.
%F A(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j) * binomial(2*j,j).
%F n * A(n,k) = k * (2*n-1) * A(n-1,k) - k * (k-4) * (n-1) * A(n-2,k).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, 1, ...
%e 0, 1, 2, 3, 4, 5, 6, ...
%e 0, 3, 8, 15, 24, 35, 48, ...
%e 0, 7, 32, 81, 160, 275, 432, ...
%e 0, 19, 136, 459, 1120, 2275, 4104, ...
%e 0, 51, 592, 2673, 8064, 19375, 40176, ...
%e 0, 141, 2624, 15849, 59136, 168125, 400896, ...
%e 0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
%t A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, _] = 1; A[_, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, May 07 2019 *)
%Y Columns k=0..4 give A000007, A002426, A006139, A122868, A059304.
%Y Main diagonal gives A092366.
%Y Cf. A107267, A292627, A307819, A307847, A307855, A307883.
%K nonn,tabl
%O 0,8
%A _Seiichi Manyama_, May 05 2019