OFFSET
0,8
FORMULA
G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(1/k) * (1 + x * A_k(x)^(3/k)) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A186996.
B(x)^k = B(x)^(k-1) + x * B(x)^k + x^2 * B(x)^(k+3). So T(n,k) = T(n,k-1) + T(n-1,k) + T(n-2,k+3) for n > 1.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 5, 9, 14, 20, 27, ...
0, 6, 16, 31, 52, 80, 116, ...
0, 20, 56, 114, 201, 325, 495, ...
0, 72, 208, 438, 800, 1341, 2118, ...
0, 273, 806, 1739, 3260, 5615, 9119, ...
PROG
(PARI) T(n, k, t=1, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
CROSSREFS
KEYWORD
AUTHOR
Seiichi Manyama, Nov 21 2024
STATUS
approved