login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255610 G.f.: Product_{k>=1} 1/(1-x^k)^(3*k). 12
1, 3, 12, 37, 111, 303, 804, 2022, 4950, 11715, 27081, 61083, 135112, 293142, 625620, 1314267, 2722323, 5564172, 11234865, 22424904, 44284545, 86573147, 167648418, 321746907, 612274678, 1155782109, 2165116416, 4026391221, 7435806048, 13641093684, 24865920932 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vaclav Kotesovec)

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19.

Vaclav Kotesovec, Graph - The asymptotic ratio (250000 terms)

Eric Weisstein's World of Mathematics, Plane Partition

Wikipedia, Plane partition

FORMULA

G.f.: Product_{k>=1} 1/(1-x^k)^(3*k).

a(n) ~ Zeta(3)^(1/4) * exp(1/4 + 2^(-2/3) * 3^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (A^3 * 6^(1/4) * sqrt(Pi) * n^(3/4)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Feb 28 2015

More precise asymptotics: a(n) ~ Zeta(3)^(1/4) * exp(1/4 + 2^(-2/3) * 3^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (A^3 * 6^(1/4) * sqrt(Pi) * n^(3/4)) * (1 - c/n^(2/3)), where c = 0.21774822... . - Vaclav Kotesovec, Oct 15 2015

G.f.: exp(3*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 29 2018

MAPLE

a:= proc(n) option remember; `if`(n=0, 1, 3*add(

      a(n-j)*numtheory[sigma][2](j), j=1..n)/n)

    end:

seq(a(n), n=0..30);  # Alois P. Heinz, Mar 11 2015

MATHEMATICA

nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A000219, A161870, A255611, A255612, A255613, A255614, A193427.

Column k=3 of A255961.

Sequence in context: A145951 A083215 A211958 * A022727 A290930 A264423

Adjacent sequences:  A255607 A255608 A255609 * A255611 A255612 A255613

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Feb 28 2015

EXTENSIONS

New name from Vaclav Kotesovec, Mar 12 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)