login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255612
G.f.: Product_{k>=1} 1/(1-x^k)^(5*k).
9
1, 5, 25, 100, 370, 1251, 4005, 12150, 35400, 99365, 270353, 715025, 1844650, 4652075, 11494605, 27872056, 66428295, 155809600, 360079225, 820715820, 1846583863, 4104572975, 9019869125, 19608423750, 42193733645, 89917531549, 189863358445, 397401303850
OFFSET
0,2
LINKS
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19.
Eric Weisstein's World of Mathematics, Plane Partition
Wikipedia, Plane partition
FORMULA
G.f.: Product_{k>=1} 1/(1-x^k)^(5*k).
a(n) ~ 5^(11/36) * Zeta(3)^(11/36) * exp(5/12 + 3 * 2^(-2/3) * 5^(1/3) * Zeta(3)^(1/3) * n^(2/3)) / (A^5 * 2^(7/36) * sqrt(3*Pi) * n^(29/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Feb 28 2015
G.f.: exp(5*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 29 2018
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, 5*add(
a(n-j)*numtheory[sigma][2](j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 11 2015
MATHEMATICA
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(5*k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Feb 28 2015
EXTENSIONS
New name from Vaclav Kotesovec, Mar 12 2015
STATUS
approved