login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255612 G.f.: Product_{k>=1} 1/(1-x^k)^(5*k). 9
1, 5, 25, 100, 370, 1251, 4005, 12150, 35400, 99365, 270353, 715025, 1844650, 4652075, 11494605, 27872056, 66428295, 155809600, 360079225, 820715820, 1846583863, 4104572975, 9019869125, 19608423750, 42193733645, 89917531549, 189863358445, 397401303850 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..1000

Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19.

Eric Weisstein's World of Mathematics, Plane Partition

Wikipedia, Plane partition

FORMULA

G.f.: Product_{k>=1} 1/(1-x^k)^(5*k).

a(n) ~ 5^(11/36) * Zeta(3)^(11/36) * exp(5/12 + 3 * 2^(-2/3) * 5^(1/3) * Zeta(3)^(1/3) * n^(2/3)) / (A^5 * 2^(7/36) * sqrt(3*Pi) * n^(29/36)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Feb 28 2015

G.f.: exp(5*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 29 2018

MAPLE

a:= proc(n) option remember; `if`(n=0, 1, 5*add(

      a(n-j)*numtheory[sigma][2](j), j=1..n)/n)

    end:

seq(a(n), n=0..30);  # Alois P. Heinz, Mar 11 2015

MATHEMATICA

nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(5*k), {k, 1, nmax}], {x, 0, nmax}], x]

CROSSREFS

Cf. A000219, A161870, A255610, A255611, A255613, A255614, A193427.

Column k=5 of A255961.

Sequence in context: A201841 A146830 A316778 * A022729 A098111 A224415

Adjacent sequences:  A255609 A255610 A255611 * A255613 A255614 A255615

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Feb 28 2015

EXTENSIONS

New name from Vaclav Kotesovec, Mar 12 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 21:32 EST 2021. Contains 349416 sequences. (Running on oeis4.)