login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255615 a(n) is the number of even A098550 terms less than 2*prime(n) but occurring after 2*prime(n). 3
0, 0, 0, 3, 1, 2, 1, 0, 0, 1, 3, 1, 1, 3, 1, 1, 1, 1, 0, 1, 1, 3, 0, 0, 0, 2, 1, 0, 1, 0, 1, 2, 1, 2, 0, 0, 2, 0, 0, 1, 2, 1, 1, 0, 0, 0, 4, 3, 2, 2, 2, 0, 0, 4, 5, 1, 2, 1, 1, 2, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 2, 1, 2, 1, 0, 1, 2, 2, 4, 4, 1, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Peter J. C. Moses, Table of n, a(n) for n = 1..1000

David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015.

EXAMPLE

Let A=A098550. Let n=4, prime(4)=7, 2*prime(4)=14 = A(8). We have 2=A(2), 4=A(4), 6=A(10), 8=A(6), 10=A(16), 12=A(12). Thus 6,10 and 12 appear in A later than 14. So a(4)=3.

MATHEMATICA

terms = 87;

f[lst_] := Block[{k = 4}, While[ GCD[ lst[[-2]], k] == 1 || GCD[ lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]]; A098550 = Nest[f, {1, 2, 3}, 12 terms] ;

a[n_] := Module[{p, pos}, p = Prime[n]; pos = FirstPosition[A098550, 2 p][[1]]; Count[A098550[[pos+1 ;; 12 terms]], k_ /; EvenQ[k] && k < 2 p]];

Array[a, terms] (* Jean-Fran├žois Alcover, Dec 12 2018, after Robert G. Wilson v in A098550 *)

CROSSREFS

Cf. A098550, A000040.

Sequence in context: A261349 A227962 A331105 * A056931 A139569 A201590

Adjacent sequences:  A255612 A255613 A255614 * A255616 A255617 A255618

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, Feb 28 2015

EXTENSIONS

More terms from Peter J. C. Moses, Feb 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 21:47 EST 2020. Contains 331066 sequences. (Running on oeis4.)