The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A261349 T(n,k) is the decimal equivalent of a code for k that maximizes the sum of the Hamming distances between (cyclical) adjacent code words; triangle T(n,k), n>=0, 0<=k<=2^n-1, read by rows. 1
 0, 0, 1, 0, 3, 1, 2, 0, 7, 1, 6, 3, 4, 2, 5, 0, 15, 1, 14, 3, 12, 2, 13, 6, 9, 7, 8, 5, 10, 4, 11, 0, 31, 1, 30, 3, 28, 2, 29, 6, 25, 7, 24, 5, 26, 4, 27, 12, 19, 13, 18, 15, 16, 14, 17, 10, 21, 11, 20, 9, 22, 8, 23, 0, 63, 1, 62, 3, 60, 2, 61, 6, 57, 7, 56, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS This code might be called "Anti-Gray code". The sum of the Hamming distances between (cyclical) adjacent code words of row n gives 0, 2, 6, 20, 56, 144, 352, ... = A014480(n-1) for n>1. LINKS Alois P. Heinz, Rows n = 0..13, flattened Wikipedia, Gray code Wikipedia, Hamming distance FORMULA T(n,k) = A003188(k/2) if k even, T(n,k) = 2^n-1-A003188((k-1)/2) else. A101080(T(n,2k),T(n,2k+1)) = n, A101080(T(n,2k),T(n,2k-1)) = n-1. T(n,2^n-1) = A083329(n-1) for n>0. T(n,2^n-2) = A000079(n-2) for n>1. T(2n,2n) = A003188(n). T(2n+1,2n+1) = 2*4^n - 1 - A003188(n) = A083420(n) - A003188(n). EXAMPLE Triangle T(n,k) begins:   0;   0,  1;   0,  3, 1,  2;   0,  7, 1,  6, 3,  4, 2,  5;   0, 15, 1, 14, 3, 12, 2, 13, 6,  9, 7,  8, 5, 10, 4, 11;   0, 31, 1, 30, 3, 28, 2, 29, 6, 25, 7, 24, 5, 26, 4, 27, 12, 19, ... ;   0, 63, 1, 62, 3, 60, 2, 61, 6, 57, 7, 56, 5, 58, 4, 59, 12, 51, ... ; MAPLE g:= n-> Bits[Xor](n, iquo(n, 2)): T:= (n, k)-> (t-> `if`(m=0, t, 2^n-1-t))(g(iquo(k, 2, 'm'))): seq(seq(T(n, k), k=0..2^n-1), n=0..6); CROSSREFS Columns k=0-3 give: A000004, A000225, A000012 (for n>1), A000918 (for n>1). Row lengths give A000079. Row sums give A006516. Cf. A003188, A014480, A083329, A083420, A101080. Sequence in context: A054869 A201671 A226590 * A227962 A331105 A255615 Adjacent sequences:  A261346 A261347 A261348 * A261350 A261351 A261352 KEYWORD nonn,look,tabf,easy AUTHOR Alois P. Heinz, Nov 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 28 22:33 EST 2020. Contains 331328 sequences. (Running on oeis4.)