login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261352 Primes p such that prime(p)+2 = prime(q)*prime(r) for distinct primes q and r. 5
11, 23, 167, 197, 223, 317, 359, 461, 593, 619, 859, 1283, 1289, 1327, 1487, 1759, 1879, 2557, 2579, 2749, 2879, 3617, 4159, 4783, 5081, 5333, 5531, 5689, 5783, 5867, 6427, 6521, 7589, 7681, 7727, 7753, 9041, 9157, 9283, 9479, 10111, 10289, 10853, 11261, 11779, 11867, 12541, 13309, 13399, 13687 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: The sequence has infinitely many terms.

See also A261354 for a similar conjecture, and A261353 for a stronger conjecture.

Recall that a prime p is called a Chen prime if p+2 is a product of at most two primes. It is known that there are infinitely many Chen primes.

REFERENCES

Jing-run Chen, On the representation of a large even integer as the sum of a prime and a product of at most two primes, Sci. Sinica 16(1973), 157-176.

Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

LINKS

Zhi-Wei Sun, Table of n, a(n) for n = 1..10000

Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.

EXAMPLE

a(1) = 11 since 11 is a prime, and prime(11)+2 = 3*11 = prime(2)*prime(5) with 2 and 5 both prime.

a(2) = 23 since 23 is a prime, and prime(23)+2 = 5*17 = prime(3)*prime(7) with 3 and 7 both prime.

MATHEMATICA

Dv[n_]:=Divisors[n]

PQ[n_]:=PrimeQ[n]&&PrimeQ[PrimePi[n]]

q[n_]:=Length[Dv[n]]==4&&PQ[Part[Dv[n], 2]]&&PQ[Part[Dv[n], 3]]

f[k_]:=Prime[Prime[k]]+2

n=0; Do[If[q[f[k]], n=n+1; Print[n, " ", Prime[k]]], {k, 1, 1620}]

CROSSREFS

Cf. A000040, A109611, A261282, A261353, A261354, A261361.

Sequence in context: A106388 A171068 A091465 * A018979 A181147 A059327

Adjacent sequences:  A261349 A261350 A261351 * A261353 A261354 A261355

KEYWORD

nonn

AUTHOR

Zhi-Wei Sun, Aug 15 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 23 18:42 EDT 2017. Contains 286926 sequences.