login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299166
Expansion of 1/(1 - x*Product_{k>=1} 1/(1 - x^k)^k).
10
1, 1, 2, 6, 17, 48, 132, 365, 1003, 2759, 7583, 20843, 57283, 157442, 432719, 1189317, 3268818, 8984318, 24693343, 67869557, 186539251, 512702559, 1409161449, 3873076007, 10645137706, 29258128633, 80415877302, 221022792843, 607480469466, 1669658209311, 4589050472041
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: 1/(1 - x*Product_{k>=1} 1/(1 - x^k)^k).
a(0) = 1; a(n) = Sum_{k=1..n} A000219(k-1)*a(n-k).
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
end:
a:= n-> add(b(n-j, j), j=0..n):
seq(a(n), n=0..35); # Alois P. Heinz, Feb 04 2018
MATHEMATICA
nmax = 30; CoefficientList[Series[1/(1 - x Product[1/(1 - x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
Antidiagonal sums of A255961.
Sequence in context: A032638 A292229 A090039 * A136776 A018915 A019487
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 04 2018
STATUS
approved