login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1 - x*Product_{k>=1} 1/(1 - x^k)^k).
10

%I #8 Feb 04 2018 16:16:12

%S 1,1,2,6,17,48,132,365,1003,2759,7583,20843,57283,157442,432719,

%T 1189317,3268818,8984318,24693343,67869557,186539251,512702559,

%U 1409161449,3873076007,10645137706,29258128633,80415877302,221022792843,607480469466,1669658209311,4589050472041

%N Expansion of 1/(1 - x*Product_{k>=1} 1/(1 - x^k)^k).

%H Alois P. Heinz, <a href="/A299166/b299166.txt">Table of n, a(n) for n = 0..1000</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F G.f.: 1/(1 - x*Product_{k>=1} 1/(1 - x^k)^k).

%F a(0) = 1; a(n) = Sum_{k=1..n} A000219(k-1)*a(n-k).

%p b:= proc(n, k) option remember; `if`(n=0, 1, k*add(

%p b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)

%p end:

%p a:= n-> add(b(n-j, j), j=0..n):

%p seq(a(n), n=0..35); # _Alois P. Heinz_, Feb 04 2018

%t nmax = 30; CoefficientList[Series[1/(1 - x Product[1/(1 - x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]

%Y Antidiagonal sums of A255961.

%Y Cf. A000219, A067687, A299105, A299106, A299108, A299162, A299164, A299167.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Feb 04 2018