login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073370
Convolution triangle of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0.
19
1, 1, 1, 3, 2, 1, 5, 7, 3, 1, 11, 16, 12, 4, 1, 21, 41, 34, 18, 5, 1, 43, 94, 99, 60, 25, 6, 1, 85, 219, 261, 195, 95, 33, 7, 1, 171, 492, 678, 576, 340, 140, 42, 8, 1, 341, 1101, 1692, 1644, 1106, 546, 196, 52, 9, 1
OFFSET
0,4
COMMENTS
The g.f. for the row polynomials P(n,x) = Sum_{m=0..n} T(n,m)*x^m is 1/(1-(1+x+2*z)*z). See Shapiro et al. reference and comment under A053121 for such convolution triangles.
Riordan array (1/(1-x-2*x^2), x/(1-x-2*x^2)). - Paul Barry, Mar 15 2005
Subtriangle (obtained by dropping the first column) of the triangle given by (0, 1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 19 2013
The number of ternary words of length n having k letters equal 2 and 0,1 avoid runs of odd lengths. - Milan Janjic, Jan 14 2017
LINKS
W. Lang, First 10 rows.
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
FORMULA
T(n, m) = Sum_{k=0..floor((n-m)/2)} binomial(n-k, m)*binomial(n-m-k, k)*2^k, if n > m, else 0.
Sum_{k=0..n} T(n, k) = A002605(n+1).
T(n, m) = (1*(n-m+1)*T(n, m-1) + 2*2*(n+m)*T(n-1, m-1))/((1^2 + 4*2)*m), n >= m >= 1, T(n, 0) = A001045(n+1), n >= 0, else 0.
T(n, m) = (p(m-1, n-m)*1*(n-m+1)*T(n-m+1) + q(m-1, n-m)*2*(n-m+2)*T(n-m))/(m!*9^m), n >= m >= 1, with T(n) = T(n, m=0) = A001045(n+1), else 0; p(k, n) = Sum_{j=0..k} (A(k, j)*n^(k-j) and q(k, n) = Sum_{j=0..k} B(k, j)*n^(k-j), with the number triangles A(k, m) = A073399(k, m) and B(k, m) = A073400(k, m).
G.f.: 1/(1-(1+2*x)*x)^(m+1) = 1/((1+x)*(1-2*x))^(m+1), m >= 0, for column m (without leading zeros).
T(n, 0) = A001045(n), T(1, 1) = 1, T(n, k) = 0 if k>n, T(n, k) = T(n-1, k-1) + 2*T(n-2, k) + T(n-1, k) otherwise. - Paul Barry, Mar 15 2005
G.f.: (1+x)*(1-2*x)/(1-x-2*x^2-x*y) for the triangle including the 1, 0, 0, 0, 0, ... column. - R. J. Mathar, Aug 11 2015
From Peter Bala, Oct 07 2019: (Start)
Recurrence for row polynomials: R(n,x) = (1 + x)*R(n-1,x) + 2*R(n-2,x) with R(0,x) = 1 and R(1,x) = 1 + x.
The row reverse polynomial x^n*R(n,1/x) is equal to the numerator polynomial of the finite continued fraction 1 + x/(1 - 2*x/(1 + ... + x/(1 - 2*x/(1)))) (with 2*n partial numerators). Cf. A110441. (End)
From G. C. Greubel, Oct 01 2022: (Start)
T(n, k) = binomial(n,k)*Sum_{j=0..floor((n-k)/2)} 2^j*binomial(2*j, j)*binomial(n-k, 2*j)/binomial(n, j).
T(n, k) = binomial(n, k)*Hypergeometric2F1([(k-n)/2, (k-n+1)/2], [-2*n], -8).
Sum_{k=0..n} (-1)^k * T(n, k) = A077957(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A006130(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A000045(n+1). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
3, 2, 1;
5, 7, 3, 1;
11, 16, 12, 4, 1;
21, 41, 34, 18, 5, 1;
43, 94, 99, 60, 25, 6, 1;
85, 219, 261, 195, 95, 33, 7, 1;
171, 492, 678, 576, 340, 140, 42, 8, 1;
The triangle (0, 1, 2, -2, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 5, 7, 3, 1;
0, 11, 16, 12, 4, 1;
0, 21, 41, 34, 18, 5, 1; - Philippe Deléham, Feb 19 2013
MAPLE
# Uses function PMatrix from A357368. Adds a row above and a column to the left.
PMatrix(10, n -> (2^n - (-1)^n) / 3); # Peter Luschny, Oct 07 2022
MATHEMATICA
T[n_, k_]:= T[n, k]= Sum[Binomial[n-j, k]*Binomial[n-k-j, j]*2^j, {j, 0, Floor[(n- k)/2]}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 01 2022 *)
PROG
(Magma)
A073370:= func< n, k | (&+[Binomial(n-j, k)*Binomial(n-k-j, j)*2^j: j in [0..Floor((n-k)/2)]]) >;
[A073370(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 01 2022
(SageMath)
def A073370(n, k): return binomial(n, k)*sum( 2^j * binomial(2*j, j) * binomial(n-k, 2*j)/binomial(n, j) for j in range(1+(n-k)//2))
flatten([[A073370(n, k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 01 2022
CROSSREFS
Columns: A001045 (k=0), A073371 (k=1), A073372 (k=2), A073373 (k=3), A073374 (k=4), A073375 (k=5), A073376 (k=6), A073377 (k=7), A073378 (k=8), A073379 (k=9).
Cf. A002605 (row sums), A006130 (diagonal sums), A073399, A073400.
Sequence in context: A065366 A360364 A092879 * A208511 A129675 A232206
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved