login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073372
Second convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.
7
1, 3, 12, 34, 99, 261, 678, 1692, 4149, 9959, 23568, 55014, 127031, 290457, 658602, 1482240, 3314025, 7365915, 16285300, 35832810, 78500811, 171293293, 372412782, 806963364, 1743173469, 3754782351, 8066319768, 17285917742, 36957928479, 78847115649
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073371(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+2, 2) * binomial(n-k, k) * 2^k.
a(n) = ((30+9*n)*(n+1)*U(n+1) + 2*(33+9*n)*(n+2)*U(n))/162 with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1 - (1+2*x)*x)^3.
E.g.f.: (1/162)*(32*(4 + 9*x + 3*x^2)*exp(2*x) + (34 - 24*x + 3*x^2)*exp(-x)). - G. C. Greubel, Sep 28 2022
MATHEMATICA
CoefficientList[Series[-(-1+x+2x^2)^(-3), {x, 0, 78}], x] (* or *) Table[(-3*(-1)^n*n^2+3*2^(n+2)*n^2-15*(-1)^n*n+9*2^(n+2)*n-16*(-1)^n+2^(n+4))/162, {n, 42}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
PROG
(Magma) [(2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162: n in [0..40]]; // G. C. Greubel, Sep 28 2022
(SageMath)
def A073372(n): return (2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162
[A073372(n) for n in range(40)] # G. C. Greubel, Sep 28 2022
CROSSREFS
Third (m=2) column of triangle A073370.
Sequence in context: A060298 A304975 A226546 * A305023 A026573 A326660
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved