login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Convolution triangle of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0.
19

%I #54 Oct 07 2022 07:33:07

%S 1,1,1,3,2,1,5,7,3,1,11,16,12,4,1,21,41,34,18,5,1,43,94,99,60,25,6,1,

%T 85,219,261,195,95,33,7,1,171,492,678,576,340,140,42,8,1,341,1101,

%U 1692,1644,1106,546,196,52,9,1

%N Convolution triangle of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0.

%C The g.f. for the row polynomials P(n,x) = Sum_{m=0..n} T(n,m)*x^m is 1/(1-(1+x+2*z)*z). See Shapiro et al. reference and comment under A053121 for such convolution triangles.

%C Riordan array (1/(1-x-2*x^2), x/(1-x-2*x^2)). - _Paul Barry_, Mar 15 2005

%C Subtriangle (obtained by dropping the first column) of the triangle given by (0, 1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Feb 19 2013

%C The number of ternary words of length n having k letters equal 2 and 0,1 avoid runs of odd lengths. - _Milan Janjic_, Jan 14 2017

%H G. C. Greubel, <a href="/A073370/b073370.txt">Rows n = 0..50 of the triangle, flattened</a>

%H W. Lang, <a href="/A073370/a073370.txt">First 10 rows</a>.

%H Milan Janjić, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Janjic/janjic93.html">Words and Linear Recurrences</a>, J. Int. Seq. 21 (2018), #18.1.4.

%F T(n, m) = Sum_{k=0..floor((n-m)/2)} binomial(n-k, m)*binomial(n-m-k, k)*2^k, if n > m, else 0.

%F Sum_{k=0..n} T(n, k) = A002605(n+1).

%F T(n, m) = (1*(n-m+1)*T(n, m-1) + 2*2*(n+m)*T(n-1, m-1))/((1^2 + 4*2)*m), n >= m >= 1, T(n, 0) = A001045(n+1), n >= 0, else 0.

%F T(n, m) = (p(m-1, n-m)*1*(n-m+1)*T(n-m+1) + q(m-1, n-m)*2*(n-m+2)*T(n-m))/(m!*9^m), n >= m >= 1, with T(n) = T(n, m=0) = A001045(n+1), else 0; p(k, n) = Sum_{j=0..k} (A(k, j)*n^(k-j) and q(k, n) = Sum_{j=0..k} B(k, j)*n^(k-j), with the number triangles A(k, m) = A073399(k, m) and B(k, m) = A073400(k, m).

%F G.f.: 1/(1-(1+2*x)*x)^(m+1) = 1/((1+x)*(1-2*x))^(m+1), m >= 0, for column m (without leading zeros).

%F T(n, 0) = A001045(n), T(1, 1) = 1, T(n, k) = 0 if k>n, T(n, k) = T(n-1, k-1) + 2*T(n-2, k) + T(n-1, k) otherwise. - _Paul Barry_, Mar 15 2005

%F G.f.: (1+x)*(1-2*x)/(1-x-2*x^2-x*y) for the triangle including the 1, 0, 0, 0, 0, ... column. - _R. J. Mathar_, Aug 11 2015

%F From _Peter Bala_, Oct 07 2019: (Start)

%F Recurrence for row polynomials: R(n,x) = (1 + x)*R(n-1,x) + 2*R(n-2,x) with R(0,x) = 1 and R(1,x) = 1 + x.

%F The row reverse polynomial x^n*R(n,1/x) is equal to the numerator polynomial of the finite continued fraction 1 + x/(1 - 2*x/(1 + ... + x/(1 - 2*x/(1)))) (with 2*n partial numerators). Cf. A110441. (End)

%F From _G. C. Greubel_, Oct 01 2022: (Start)

%F T(n, k) = binomial(n,k)*Sum_{j=0..floor((n-k)/2)} 2^j*binomial(2*j, j)*binomial(n-k, 2*j)/binomial(n, j).

%F T(n, k) = binomial(n, k)*Hypergeometric2F1([(k-n)/2, (k-n+1)/2], [-2*n], -8).

%F Sum_{k=0..n} (-1)^k * T(n, k) = A077957(n).

%F Sum_{k=0..floor(n/2)} T(n-k, k) = A006130(n).

%F Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A000045(n+1). (End)

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 3, 2, 1;

%e 5, 7, 3, 1;

%e 11, 16, 12, 4, 1;

%e 21, 41, 34, 18, 5, 1;

%e 43, 94, 99, 60, 25, 6, 1;

%e 85, 219, 261, 195, 95, 33, 7, 1;

%e 171, 492, 678, 576, 340, 140, 42, 8, 1;

%e The triangle (0, 1, 2, -2, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:

%e 1;

%e 0, 1;

%e 0, 1, 1;

%e 0, 3, 2, 1;

%e 0, 5, 7, 3, 1;

%e 0, 11, 16, 12, 4, 1;

%e 0, 21, 41, 34, 18, 5, 1; - _Philippe Deléham_, Feb 19 2013

%p # Uses function PMatrix from A357368. Adds a row above and a column to the left.

%p PMatrix(10, n -> (2^n - (-1)^n) / 3); # _Peter Luschny_, Oct 07 2022

%t T[n_, k_]:= T[n, k]= Sum[Binomial[n-j,k]*Binomial[n-k-j,j]*2^j, {j,0,Floor[(n- k)/2]}];

%t Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Oct 01 2022 *)

%o (Magma)

%o A073370:= func< n,k | (&+[Binomial(n-j,k)*Binomial(n-k-j,j)*2^j: j in [0..Floor((n-k)/2)]]) >;

%o [A073370(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Oct 01 2022

%o (SageMath)

%o def A073370(n,k): return binomial(n,k)*sum( 2^j * binomial(2*j,j) * binomial(n-k,2*j)/binomial(n,j) for j in range(1+(n-k)//2))

%o flatten([[A073370(n,k) for k in range(n+1)] for n in range(12)]) # _G. C. Greubel_, Oct 01 2022

%Y Columns: A001045 (k=0), A073371 (k=1), A073372 (k=2), A073373 (k=3), A073374 (k=4), A073375 (k=5), A073376 (k=6), A073377 (k=7), A073378 (k=8), A073379 (k=9).

%Y Cf. A002605 (row sums), A006130 (diagonal sums), A073399, A073400.

%Y Cf. A000045, A077957.

%K nonn,easy,tabl

%O 0,4

%A _Wolfdieter Lang_, Aug 02 2002