Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Feb 18 2023 18:01:05
%S 1,8,44,200,810,3032,10716,36248,118435,376240,1167720,3553840,
%T 10636180,31375440,91392040,263266512,750922021,2123059448,5955034740,
%U 16584106040,45884989054,126202397032
%N Third convolution of A000129(n+1) (generalized (2,1)-Fibonacci, called Pell numbers), n>=0, with itself.
%H G. C. Greubel, <a href="/A073380/b073380.txt">Table of n, a(n) for n = 0..1000</a>
%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Janjic/janjic33.html">Hessenberg Matrices and Integer Sequences </a>, J. Int. Seq. 13 (2010) # 10.7.8
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-20,8,26,-8,-20,-8,-1).
%F a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A000129(k+1) and c(k) = A054457(k).
%F a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k) * binomial(n-k+3, 3) * binomial(n-k, k).
%F a(n) = ((147 +94*n +14*n^2)*(n+1)*U(n+1) + 3*(15 +12*n +2*n^2)*(n+2)*U(n))/ (3*2^7), with U(n) = A000129(n+1), n >= 0.
%F G.f.: 1/(1-(2+x)*x)^4.
%F a(n) = F'''(n+4, 2)/6, that is, 1/6 times the 3rd derivative of the (n+4)th Fibonacci polynomial evaluated at x=2. - _T. D. Noe_, Jan 19 2006
%t CoefficientList[Series[1/(1-2*x-x^2)^4, {x,0,40}], x] (* _G. C. Greubel_, Oct 02 2022 *)
%t LinearRecurrence[{8,-20,8,26,-8,-20,-8,-1},{1,8,44,200,810,3032,10716,36248},30] (* _Harvey P. Dale_, Feb 18 2023 *)
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-x^2)^4 )); // _G. C. Greubel_, Oct 02 2022
%o (SageMath)
%o def A073380_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( 1/(1-2*x-x^2)^4 ).list()
%o A073380_list(30) # _G. C. Greubel_, Oct 02 2022
%Y Fourth (m=3) column of triangle A054456, A054457 (m=2).
%Y Cf. A000129.
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Aug 02 2002