|
|
A022642
|
|
Expansion of Product_{m>=1} (1 + m*q^m)^14.
|
|
2
|
|
|
1, 14, 119, 798, 4557, 23142, 107366, 462856, 1876952, 7224714, 26579063, 93966992, 320651170, 1059923690, 3404112479, 10649329250, 32521525967, 97132069090, 284187808429, 815681830796, 2299630643723, 6375380037894, 17398106046384, 46777705917502, 124014391872203, 324432027054226
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
|
|
MAPLE
|
[seq(coeff(series(mul((1+m*q^m)^(14), m=1..100), q, 101), q, j), j=0..25)]; # Muniru A Asiru, Feb 18 2018
|
|
MATHEMATICA
|
With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^14, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Feb 17 2018 *)
|
|
PROG
|
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^14)) \\ G. C. Greubel, Feb 17 2018
(Magma) Coefficients(&*[(1+m*x^m)^14:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 17 2018
|
|
CROSSREFS
|
Column k=14 of A297321.
Sequence in context: A341390 A023012 A073383 * A268446 A221230 A240051
Adjacent sequences: A022639 A022640 A022641 * A022643 A022644 A022645
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|