login
A022645
Expansion of Product_{m>=1} (1 + m*q^m)^17.
2
1, 17, 170, 1309, 8483, 48467, 251209, 1203311, 5397330, 22890874, 92481394, 358011602, 1334253585, 4805716553, 16782510007, 56979399970, 188517704002, 609021410570, 1924506074441, 5957712195945, 18092683604856, 53965253533463, 158264095730459, 456803437466434, 1298781701177781
OFFSET
0,2
LINKS
MAPLE
[seq(coeff(series(mul((1+m*q^m)^(17), m=1..100), q, 101), q, j), j=0..25)]; # Muniru A Asiru, Feb 18 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^17, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Feb 17 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^17)) \\ G. C. Greubel, Feb 17 2018
(Magma) Coefficients(&*[(1+m*x^m)^17:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 17 2018
CROSSREFS
Column k=17 of A297321.
Sequence in context: A121037 A282922 A023015 * A326211 A164747 A166579
KEYWORD
nonn
STATUS
approved