login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282922 Expansion of Product_{n>=1} (1 - x^(7*n))^16/(1 - x^n)^17 in powers of x. 2
1, 17, 170, 1275, 7905, 42619, 206091, 912459, 3753328, 14500320, 53053498, 185046190, 618555931, 1990227519, 6186291009, 18633598578, 54530992072, 155401842842, 432109571275, 1174385295541, 3124445373406, 8148428799893, 20856618453595, 52451748129498 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: Product_{n>=1} (1 - x^(7*n))^16/(1 - x^n)^17.

a(n) ~ exp(Pi*sqrt(206*n/21)) * sqrt(103) / (4*sqrt(3) * 7^(17/2) * n). - Vaclav Kotesovec, Nov 10 2017

MATHEMATICA

nmax = 30; CoefficientList[Series[Product[(1 - x^(7*k))^16/(1 - x^k)^17, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 10 2017 *)

PROG

(PARI) my(x='x+O('x^30)); Vec(prod(j=1, 30, (1 - x^(7*j))^16/(1 - x^j)^17)) \\ G. C. Greubel, Nov 18 2018

(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1 - x^(7*j))^16/(1 - x^j)^17: j in [1..30]]) )); // G. C. Greubel, Nov 18 2018

(Sage)

m = 30

R = PowerSeriesRing(ZZ, 'x')

x = R.gen().O(m)

s = prod((1 - x^(7*j))^16/(1 - x^j)^17 for j in (1..m))

s.coefficients() # G. C. Greubel, Nov 18 2018

CROSSREFS

Cf. A282919.

Sequence in context: A157688 A155658 A121037 * A023015 A022645 A326211

Adjacent sequences: A282919 A282920 A282921 * A282923 A282924 A282925

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Feb 24 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 13:31 EDT 2023. Contains 361524 sequences. (Running on oeis4.)