login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Eighth convolution of A000129(n+1) (generalized (2,1)-Fibonacci, called Pell numbers), n>=0, with itself.
2

%I #28 Oct 03 2022 08:45:36

%S 1,18,189,1500,9945,58014,307197,1507176,6950295,30443270,127666539,

%T 515754252,2017069431,7667214570,28419251715,102997948704,

%U 365832349542,1275914693196,4376992440590

%N Eighth convolution of A000129(n+1) (generalized (2,1)-Fibonacci, called Pell numbers), n>=0, with itself.

%C For a(n) in terms of U(n+1) and U(n) with U(n) = A000129(n+1) see the row polynomials of triangles A058402 and A058403 and the comment there.

%H G. C. Greubel, <a href="/A073385/b073385.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (18,-135,528,-1044,504,1764,-2448,-1422,3308,1422, -2448,-1764,504,1044,528,135,18,1).

%F a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A000129(k+1) and c(k) = A073384(k).

%F a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k)*binomial(n-k+8, 8)*binomial(n-k, k).

%F G.f.: 1/(1-(2+x)*x)^9.

%F a(n) = F''''''''(n+9, 2)/8!, that is, 1/8! times the 8th derivative of the (n+9)-th Fibonacci polynomial evaluated at x=2. - _T. D. Noe_, Jan 19 2006

%t CoefficientList[Series[1/(1-(2+x)x)^9,{x,0,20}],x] (* _Harvey P. Dale_, Apr 26 2017 *)

%o (Sage) taylor( 1/(1-2*x-x^2)^9, x, 0,27).list() # _G. C. Greubel_, Oct 03 2022

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-x^2)^9 )); // _G. C. Greubel_, Oct 03 2022

%Y Ninth (m=8) column of triangle A054456.

%Y Cf. A000129, A058402, A058403, A073384.

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Aug 02 2002