login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073388
Convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
8
1, 4, 16, 56, 188, 608, 1920, 5952, 18192, 54976, 164608, 489088, 1443776, 4238336, 12382208, 36022272, 104407296, 301618176, 868765696, 2495715328, 7152286720, 20452548608, 58369409024
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} b(k)*b(n-k), with b(k) = A002605(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+1, 1)*binomial(n-k, k)*2^(n-k).
a(n) = ((n+1)*U(n+1) + 2*(n+2)*U(n))/6, with U(n) = A002605(n), n >= 0.
G.f.: 1/(1-2*x*(1+x))^2.
a(n) = Sum_{k=0..floor((n+2)/2)} k*binomial(n-k+2, k)2^(n-k+1). - Paul Barry, Oct 15 2004
MATHEMATICA
CoefficientList[Series[1/(1-2*x-2*x^2)^2, {x, 0, 40}], x] (* G. C. Greubel, Oct 03 2022 *)
PROG
(Sage) taylor( 1/(1-2*x-2*x^2)^2, x, 0, 24).list() # Zerinvary Lajos, Jun 03 2009; modified by G. C. Greubel, Oct 03 2022
(GAP) List([0..25], n->2^n*Sum([0..Int(n/2)], k->Binomial(n-k+1, 1)*Binomial(n-k, k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^2 )); // G. C. Greubel, Oct 03 2022
CROSSREFS
Second (m=1) column of triangle A073387.
Cf. A002605.
Sequence in context: A308288 A340257 A261386 * A109634 A026126 A026155
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved