login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261386
Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(2*k).
13
1, 4, 16, 56, 176, 520, 1456, 3896, 10048, 25100, 60960, 144440, 334752, 760456, 1696464, 3722224, 8043040, 17135624, 36031104, 74840568, 153680928, 312198160, 627828272, 1250540024, 2468443296, 4830809868, 9377190336, 18061370288, 34531009760, 65552873736
OFFSET
0,2
COMMENTS
Convolution of A161870 and A026011.
LINKS
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19.
FORMULA
a(n) ~ exp(1/6 + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) * (7*Zeta(3))^(2/9) / (A^2 * 2^(2/3) * n^(13/18) * sqrt(3*Pi)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
G.f.: exp(Sum_{k>=1} (sigma_2(2*k) - sigma_2(k))*x^k/k). - Ilya Gutkovskiy, Apr 14 2019
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k) / (1-x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 17 2015
STATUS
approved