OFFSET
1,2
COMMENTS
Conjecture: Let d be any nonzero integer. Then each positive rational number r can be written as m/n, where m and n are positive integers with (prime(prime(m))+d)*(prime(prime(n))+d) = prime(p)+d for some prime p.
This conjecture implies that for any nonzero integer d the equation x*y = z with x,y,z in the set {prime(p)+d: p is prime} has infinitely many solutions.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(3) = 221 since (prime(prime(221))-1)*(prime(prime(221*3))-1) = (prime(1381)-1)*(prime(4957)-1) = 11446*48130 = 550895980 = prime(28890079)-1 with 28890079 prime.
MATHEMATICA
f[n_]:=Prime[Prime[n]]-1
PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]]
Do[k=0; Label[bb]; k=k+1; If[PQ[f[k]*f[k*n]+1], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", k]; Continue, {n, 1, 70}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 17 2015
STATUS
approved