login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261382
Least positive integer k such that (k-1)^2+(k*n)^2, k^2+(k*n-1)^2, (k+1)^2+(k*n)^2 and k^2+(k*n+1)^2 are all prime.
1
2, 2510, 15, 30, 5, 510, 730, 440, 195, 6230, 2040, 2760, 20, 1010, 12570, 31340, 1625, 1650, 725, 2480, 2160, 520, 1055, 60, 5, 20, 1260, 25800, 6185, 6240, 10, 1180, 12600, 7500, 5330, 390, 325, 2880, 11655, 32670, 5850, 43110, 3230, 1470, 7680, 4950, 255, 202650, 10530, 450, 2445, 11670, 8745, 103350, 80, 6890, 135, 18930, 80, 245040
OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for any n > 0. In general, any positive rational number r can be written as m/n, where m and n are positive integers with (m-1)^2+n^2, m^2+(n-1)^2, (m+1)^2+n^2 and m^2+(n+1)^2 all prime.
It is easy to prove that if m and n are positive integers with (m-1)^2+n^2, m^2+(n-1)^2, (m+1)^2+n^2 and m^2+(n+1)^2 all prime, then either m = n = 2 or m == n == 0 (mod 5).
REFERENCES
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
EXAMPLE
a(2) = 2510 since (2510-1)^2+(2510*2)^2 = 31495481, 2510^2+(2510*2-1)^2 = 31490461, (2510+1)^2+(2510*2)^2 = 31505521 and 2510^2+(2510*2+1)^2 = 31510541 are all prime.
MATHEMATICA
PQ[p_]:=PrimeQ[p]
q[m_, n_]:=PQ[(m-1)^2+n^2]&&PQ[m^2+(n-1)^2]&&PQ[(m+1)^2+n^2]&&PQ[m^2+(n+1)^2]
Do[k=0; Label[bb]; k=k+1; If[q[k, k*n], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", k]; Continue, {n, 1, 60}]
PROG
(PARI) is_ok(k, n)=isprime((k-1)^2+(k*n)^2)&&isprime(k^2+(k*n-1)^2)&&isprime((k+1)^2+(k*n)^2)&&isprime(k^2+(k*n+1)^2)
first(m)=my(v=vector(m), k=1); for(i=1, m, while(!is_ok(k, i), k++); v[i]=k; k++; ); v; \\ Anders Hellström, Aug 17 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 17 2015
STATUS
approved