login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340257
a(n) = 2^n * (1+n*(n+1)/2).
3
1, 4, 16, 56, 176, 512, 1408, 3712, 9472, 23552, 57344, 137216, 323584, 753664, 1736704, 3964928, 8978432, 20185088, 45088768, 100139008, 221249536, 486539264, 1065353216, 2323644416, 5049942016, 10938744832, 23622320128, 50868518912, 109253230592, 234075717632
OFFSET
0,2
FORMULA
G.f.: (4*x^2-2*x+1)/(1-2*x)^3.
E.g.f.: exp(2*x)*(2*x^2+2*x+1).
a(n) = A000079(n) + A001815(n+1).
a(n) = A000079(n) * A000124(n).
a(n) = 2*a(n-1) + n*2^n = 2*a(n-1) + A036289(n), assuming a(-1) = 1/2.
a(n) = A340298(2^n).
a(n) = 2 * A087431(n) for n > 0.
a(n) = 4 * A007466(n) for n > 0.
MAPLE
a:= n-> 2^n*(1+n*(n+1)/2):
seq(a(n), n=0..30);
MATHEMATICA
Table[2^n (1+(n(n+1))/2), {n, 0, 30}] (* or *) LinearRecurrence[{6, -12, 8}, {1, 4, 16}, 30] (* Harvey P. Dale, Jan 19 2023 *)
CROSSREFS
Partial sums of A080929.
Sequence in context: A127393 A239988 A308288 * A261386 A073388 A109634
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 02 2021
STATUS
approved