login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340259
a(n) = A340312(n, 2^(n-1)). a(n) is the central term of row n of A340312.
2
1, 0, 14, 870, 18796230, 28634752793916486, 187118328452563149209991044344449606, 22533823529098462258163079522899558179092788838542277982316450977506091590
OFFSET
1,3
COMMENTS
a(9) = 2299131884087642202247291403507120751687796592498104258 * C, where C is a composite factor with 96 digits.
C = P47*P49, with P47 = 88967307877356450624418823383132738084943851019 and
P49 = 4512180962860489443011495305279720577473472225641. - Hugo Pfoertner, Jan 09 2021
LINKS
FORMULA
a(n) = (2*binomial(2^n-1, 2^(n-1)) + (2^n-1)*binomial(2^(n-1), 2^(n-2)))/2^n for n >= 3. - Andrew Howroyd, Jan 09 2021
MAPLE
seq(A340312_row(n)[2^(n-1)+1], n = 1..8);
PROG
(PARI) a(n) = {if(n<=2, n==1, (2*binomial(2^n-1, 2^(n-1)) + (2^n-1)*binomial(2^(n-1), 2^(n-2)))/2^n)} \\ Andrew Howroyd, Jan 09 2021
CROSSREFS
Sequence in context: A269335 A159871 A362998 * A269610 A115458 A241801
KEYWORD
nonn
AUTHOR
Peter Luschny, Jan 06 2021
STATUS
approved