login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340262
T(n, k) = multinomial(n + k/2; n, k/2) if k is even else 0. Triangle read by rows, for 0 <= k <= n.
0
1, 1, 0, 1, 0, 3, 1, 0, 4, 0, 1, 0, 5, 0, 15, 1, 0, 6, 0, 21, 0, 1, 0, 7, 0, 28, 0, 84, 1, 0, 8, 0, 36, 0, 120, 0, 1, 0, 9, 0, 45, 0, 165, 0, 495, 1, 0, 10, 0, 55, 0, 220, 0, 715, 0, 1, 0, 11, 0, 66, 0, 286, 0, 1001, 0, 3003, 1, 0, 12, 0, 78, 0, 364, 0, 1365, 0, 4368, 0
OFFSET
0,6
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 0;
[2] 1, 0, 3;
[3] 1, 0, 4, 0;
[4] 1, 0, 5, 0, 15;
[5] 1, 0, 6, 0, 21, 0;
[6] 1, 0, 7, 0, 28, 0, 84;
[7] 1, 0, 8, 0, 36, 0, 120, 0;
[8] 1, 0, 9, 0, 45, 0, 165, 0, 495;
[9] 1, 0, 10, 0, 55, 0, 220, 0, 715, 0;
MAPLE
T := proc(n, k) `if`(k::even, combinat:-multinomial(n + k/2, n, k/2), 0) end:
seq(seq(T(n, k), k=0..n), n=0..11);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
T[n_, k_] := If[EvenQ[k], multinomial[n + k/2, {n, k/2}], 0];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 18 2024 *)
CROSSREFS
Sequence in context: A166407 A285123 A159059 * A346369 A127569 A117372
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 05 2021
STATUS
approved