The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A159871 Numerator of Hermite(n, 7/23). 1
 1, 14, -862, -41692, 2152300, 206572744, -8493648584, -1430234859088, 42880673385872, 12705837274723040, -230428050134150624, -137653751068447871936, 754569132502974755008, 1758215991420055828669568, 14236680031434866820993920, -25843381744473778798759726336 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..385 FORMULA From G. C. Greubel, Jul 14 2018: (Start) a(n) = 23^n * Hermite(n, 7/23). E.g.f.: exp(14*x - 529*x^2). a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(14/23)^(n-2*k)/(k!*(n-2*k)!)). (End) MATHEMATICA Numerator[Table[HermiteH[n, 7/23], {n, 0, 30}]] (* Vladimir Joseph Stephan Orlovsky, Jun 22 2011 *) Table[23^n*HermiteH[n, 7/23], {n, 0, 30}] (* G. C. Greubel, Jul 14 2018 *) PROG (PARI) a(n)=numerator(polhermite(n, 7/23)) \\ Charles R Greathouse IV, Jan 29 2016 (PARI) x='x+O('x^30); Vec(serlaplace(exp(14*x - 529*x^2))) \\ G. C. Greubel, Jul 14 2018 (MAGMA) [Numerator((&+[(-1)^k*Factorial(n)*(14/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018 CROSSREFS Cf. A159858, A159859. Sequence in context: A002429 A064345 A269335 * A340259 A269610 A115458 Adjacent sequences:  A159868 A159869 A159870 * A159872 A159873 A159874 KEYWORD sign,frac AUTHOR N. J. A. Sloane, Nov 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 14 06:35 EDT 2021. Contains 343879 sequences. (Running on oeis4.)